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Abstract
A key component of Mars exploration is the oper-
ation of robotic instruments on the surface, such as
those on board the Mars Exploration Rovers, the
Mars Science Laboratory (MSL), and the planned
Mars 2020 Rover. As the instruments carried by
these rovers have become more advanced, the area
targeted by some instruments becomes smaller, re-
vealing more fine-grained details about the geol-
ogy and chemistry of rocks on the surface. How-
ever, thermal fluctuations, rover settling or slipping,
and inherent inaccuracies in pointing mechanisms
all lead to pointing error that is on the order of
the target size (several millimeters) or larger. We
show that given a target located on a previously ac-
quired image, the rover can align this with a new
image to visually locate the target and refine the
current pointing. Due to round-trip communication
constraints, this visual targeting must be done effi-
ciently on board the rover using relatively limited
computing hardware. We employ existing ORB
features for landmark-based image registration, de-
scribe and theoretically justify a novel approach to
filtering false landmark matches, and employ a ran-
dom forest classifier to automatically reject failed
alignments. We demonstrate the efficacy of our ap-
proach using over 3,800 images acquired by Re-
mote Micro-Imager on board the “Curiosity” rover.

1 Introduction
A key challenge in the operation of spacecraft on the sur-
face of other bodies in the solar system is the low-bandwidth,
high-latency communications imposed by the extreme dis-
tances between the spacecraft and Earth. Even at Mars, for
which satellites are used as relays to increase the communi-
cation bandwidth between rovers and Earth, there is rarely
the opportunity for more than one command uplink cycle per
sol (Mars day). For future proposed missions to bodies in
the outer solar system, such as the moons of Jupiter and Sat-
urn, communications will be even more limited. Hence, to
maximize the useful scientific data that is collected by these
missions, there is need to develop spacecraft that are more
capable of precise measurements without direct supervision.

A straightforward part of making spacecraft more capa-
ble is ensuring that they take measurements of the intended
targets selected by humans. For example, scientists on the
ground might identify an interesting rock in a rover’s navi-
gation camera image and command a follow-up observation
with another instrument on board. The command might spec-
ify the intended target as a position in the local coordinate
system. However, an accumulation of small errors in the esti-
mated target position from stereo vision, the rover’s position
due to slipping or thermal variations, and the instrument’s
pointing due to imperfect mechanisms might lead a narrow-
field-of-view instrument to miss the intended target. Clearly,
a human on the surface of Mars would not make such a mis-
take; they would ensure that the target of interest from the
navigation camera image was visible in the field-of-view of
the instrument before taking a measurement.

The purpose of this paper is to describe a system for preci-
sion instrument targeting through “pointing refinement” that
is aimed at mimicking the process of a human pointing an
instrument at a target of interest. Instead of specifying a tar-
get as just a point in space, the target is also specified as a
point within a context image. Then, a visual alignment of the
context image and the instrument’s field-of-view is used to
verify that the instrument is pointed sufficiently close to the
intended target. If not, the pointing is adjusted to bring the
instrument into alignment with the intended target. The capa-
bility to refine pointing visually enables measurements for a
whole new class of small-scale features that could not be tar-
geted otherwise and are important for investigating biological
signatures or assessing a target for sample return selection.

Below, we describe a landmark-based image registra-
tion approach to perform precision targeting. Although our
method can be extended to other spacecraft, we specifically
focus on pointing refinement for the future Mars 2020 rover
mission, using data from the Mars Science Laboratory (MSL)
“Curiosity” rover as an analog. In particular, we focus on
pointing refinement for the “SuperCam” instrument selected
for inclusion on Mars 2020 [Maurice et al., 2015]. SuperCam
is an upgraded version of the ChemCam instrument on board
MSL [Maurice et al., 2012; Wiens et al., 2012]. First, we
describe a novel strategy for operating instruments with pre-
cision targeting and compare this to current operations and
prior work. Then, we describe innovations in density-based
outlier removal and classification-based post-processing that



Figure 1: The ChemCam instru-
ment is located on the mast of the
Mars Science Laboratory “Curios-
ity” rover, where its large circular
aperture is visible.

enable fast, robust matching of challenging natural rock sur-
faces using landmark-based image registration. Finally, we
demonstrate the efficacy and feasibility of the pointing refine-
ment using images from MSL’s ChemCam instrument.

2 Overview
The ChemCam (short for “Chemistry and Camera”) instru-
ment on board the MSL rover (see Figure 1) uses a laser-
induced breakdown spectrometer (LIBS) to remotely measure
the composition of a rock target by firing a powerful laser at
the rock [Maurice et al., 2012; Wiens et al., 2012]. The Re-
mote Micro-Imager (RMI) within ChemCam is a telescopic
camera with a narrow 19mrad field-of-view, used to deter-
mine the context and position of the LIBS laser shot, which
occurs near the center of the field-of-view. Figure 2 shows
example RMI images, with red crosshairs indicating the po-
sition of the LIBS shot.

A simplified example of how ChemCam is operated on
Mars is shown in the upper half of Figure 2 for a rock tar-
get called “McGrath.” On Sol N , an RMI-only image of
McGrath was acquired for the purposes of carefully point-
ing the LIBS laser at a vein in the image, indicated by the
blue circle. With this target identified on the ground on Sol
N , its position was uplinked on Sol N + 1 and a LIBS
measurement was taken. Unfortunately, the laser missed
the target, so a correction in pointing was made on Earth
on Sol N + 1 and uplinked on the next opportunity. The
ground-in-the-loop pointing refinement was repeated four
times over a 40-sol period from Sols 185–226 (an anomaly on
Sol 200 limited rover operations for for a few weeks there-
after).1 On the fourth try, a measurement of McGrath was
successfully made and was important for understanding the
geochemistry of the region. McGrath’s analysis was fea-
tured in several scientific publications [Léveillé et al., 2014;
McLennan et al., 2014].

The lower half of Figure 2 shows an overview of the pro-
posed precision targeting strategy. The process begins in the
same way, with an RMI image acquired on Sol N and a tar-
get identified within that image (indicated by the blue circle).
However, in addition to the estimated target position in the
rover coordinate frame, a set of “visual landmarks” are also
uplinked to the rover. The visual landmarks are defined by
pixel coordinates (in the Sol N image) and visual features
that describe properties of the image at those locations. We
discuss the choice of features in more detail below.

1Some details of planning for each sol can be found under the
Science Operations Working Group (SOWG) documentarian notes
in the MSL Analyst’s Notebook [Stein, 2014].

On SolN+1, the rover points the RMI at the best-guess lo-
cation of the target and acquires an image. As above, this ini-
tial pointing would not hit the intended target. The rover then
extracts visual landmarks from this new image and matches
them with the landmarks from the Sol N image. This al-
lows the rover to map the target defined in the Sol N image
into the Sol N + 1 image, and infer that the current pointing
will not hit the intended target. Hence, the rover adjusts the
pointing accordingly to take a measurement of the intended
target, returning the data on Sol N + 1, rather than after sev-
eral ground-in-the-loop attempts to adjust the pointing. This
saves at least one sol, or up to 4 attempts over 40 sols as for
McGrath, and enables other measurements that might be oth-
erwise unachievable due to time constraints or ongoing ther-
mal shifting between each command cycle.

3 Related Work
There are several constraints on precision instrument target-
ing to make it practical for rover operations. First, because
there is limited storage on board the rover, the Sol N RMI
image might be deleted after it is sent to Earth, and not avail-
able during subsequent sols. Thus, the visual description of
the intended target must be compact so that it can be uplinked
to the rover using limited bandwidth. Secondly, because vi-
sual targeting must be performed using the relatively limited
on-board rover processor (a 133MHz RAD750), the visual
feature extraction and matching algorithms must be efficient.
To avoid adverse impacts on the rover schedule, it is desirable
that the entire landmark matching process complete as fast as
possible, and run no longer than 10 minutes in the worst case.
Finally, because the RMI has such a narrow field-of-view, the
algorithm must be able to handle cases when the desired tar-
get is not present in the Sol N + 1 field-of-view (although
there must be some overlap between the images).

Considering these requirements, we can describe the ap-
plicability of prior related work. A similar capability already
employed on Mars exploration rovers is visual target track-
ing (VTT). When navigating to a target of interest, rovers use
VTT to ensure that they are approaching the correct position
over long autonomous drives [Kim et al., 2008]. VTT uses
normalized cross-correlation (NCC) to find the most likely
location of a 21-by-21 pixel template sub-image containing
the target in a wide field-of-view navigation camera image.
Commanding VTT requires a small uplink bandwidth and can
be efficiently performed using rover hardware. However, the
use of NCC with a template image requires that the target of
interest actually be in the field-of-view of the follow-up (Sol
N + 1) image. While this is reasonable for the wide field-
of-view navigation cameras, this might not be the case for
RMI images. Hence, this approach (or any other NCC-based
approach) does not fulfill all of the requirements.

An alternative strategy is to register the Sol N and Sol
N + 1 images. Given the alignment of two images, the posi-
tion of the target with respect to the Sol N + 1 pointing can
be inferred, even if it is not present in the field-of-view. State-
of-the-art image registration approaches use visual landmarks
detected and matched across a pair of images. Landmarks are
locations in an image with associated visual features used to
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Figure 2: A comparison of precision targeting versus the current strategy. In both cases, an image is acquired on Mars on Sol
N and downlinked to Earth, where a target (blue circle) is identified. Currently, the best estimate of the rover-relative target
location is used to acquire a measurement on SolN+1. If the target is missed, a correction to pointing is made and uplinked on
the next opportunity. This process continues for k sols until the target is measured, or until the rover drives to another location
to accomplish other science objectives. In contrast, visual targeting extracts and uploads visual features along with the target
location, which are matched with visual features extracted from the Sol N + 1 image to correct pointing on board. The rover
acquires the correct measurement on Sol N + 1, saving at least one sol or enabling otherwise unachievable measurements.

uniquely describe image the at that location [Moravec, 1981].
Landmarks are matched across two images by finding the
nearest-neighbors of these descriptors in the feature space.

A successful and widely used landmark description is
scale-invariant feature transform (SIFT), which uses a his-
togram of image gradient orientations in a region surround-
ing the landmark [Lowe, 2004]. SIFT has been used for
visual targeting with terrestrial robots [Thompson et al.,
2011]. Unfortunately, SIFT feature descriptors are large
(128-dimensional) and expensive to uplink, and not efficient
to compute on board. Even subsequently developed land-
mark features like speeded up robust features (SURF) [Bay
et al., 2006], aimed to reduce the computational complexity
of SIFT, are too expensive to compute with rover hardware.

More recently, with an increasing interest in performing
image registration for real-time applications using embedded
hardware and mobile devices, even more efficient image de-
scriptors such as oriented FAST and rotated BRIEF (ORB)
and binary robust invariant scalable keypoints (BRISK) were
developed [Rublee et al., 2011; Leutenegger et al., 2011]. In
addition to being efficient to compute, these descriptors use
binary features, which are more compact to represent than
those of SIFT or SURF. A comparison of these binary feature
descriptors found that ORB was more efficient than BRISK in
terms of memory usage and computational cost, with similar
performance [Heinly et al., 2012]. Hence, ORB best satisfies
the requirements and was selected for our application.

4 Algorithm
In this section, we describe some details of the pointing re-
finement implementation (a schematic overview is given in
Figure 3). As its name indicates, the implementation of ORB
descriptors involves two key components: (1) the detection of
landmarks using the features from accelerated segment test
(FAST) detector, and (2) the computation of descriptors us-
ing binary robust independent elementary features (BRIEF).
The FAST detector uses a pre-trained decision tree to detect
corners in an image, then uses these corners to orient the land-
mark (making them invariant to rotation between the two im-
ages) [Rosten et al., 2010]. The BRIEF descriptor is a binary
string, with each bit representing a comparison of pixel inten-
sities for 256 randomly selected pairs of points within a win-
dow surrounding the landmark [Calonder et al., 2010]. Each
of these operations involves only simple numerical compar-
isons that can be implemented efficiently with most proces-
sor architectures. Accordingly, ORB is at least 1–2 orders
of magnitude faster than SIFT or SURF, with similar perfor-
mance on the registration task [Rublee et al., 2011]. The 256
binary features can be represented as a 32-byte bit string.

Landmarks are extracted from the Sol N image on Earth
and uplinked to Mars. After the Sol N + 1 image is acquired
and landmarks are extracted, the landmarks are matched
across the two images. This step involves computing the
Hamming distance between all 32-byte feature descriptors
and finding nearest neighbors. “Cross-checking” is used so
that landmark matches are only accepted if the landmarks in
the pair are mutual nearest neighbors to each other.



Sol N
Image

Sol N + 1
Image

Detect Landmarks and
Compute Features

Detect Landmarks and
Compute Features

Match
Landmarks

Filter
Matches

Register
Images

Mapping from Sol N
to Sol N + 1 ImageM

ar
s

E
ar

th

Figure 3: An overview of the pointing refinement algorithm. The steps in the top half of the figure are performed on Earth,
while those in the lower half are processed on board the Mars rover.

Although BRIEF features are designed to uniquely de-
scribe the region of the image surrounding a landmark, there
are often false positive matches between landmarks across the
two images. In fact, we observe that for images in our do-
main, often fewer than 25% of the landmark matches found
between images are valid. Hence, the matches must be fil-
tered to remove these false positives. This presents a signifi-
cant challenge for which we propose a novel solution below.

Assuming that we have filtered out false positive landmark
matches, we can register the two images using a homogra-
phy transformation, which is a sufficient approximation since
the rover will not have driven between the Sol N and Sol
N + 1 images and the camera motion is a rotation (though
the camera is slightly offset from the axis of rotation). A ho-
mography is defined by a 3-by-3 matrix H, where for any
x = (x, y) in the Sol N image pixel space, the corresponding
point u = (u, v) in the Sol N + 1 image pixel space is given

by:

[
u
v
1

]
= αH

[
x
y
1

]
, for some scale factor α. Decom-

posing H as
[

A t
h> 1

]
, we can represent this relationship

in closed form: u = h(x) = (Ax + t)
/(

h>x + 1
)

. We can
solve for this 8-degrees-of-freedom homography matrix by
using least-squares regression and the known matching land-
marks. The solution produces a mapping from the Sol N im-
age to the SolN+1 image, allows the position of the target to
be identified with respect to the current pointing, and reveals
if it is necessary to adjust the instrument pointing.

To return to addressing the problem of false matches,
random sample consensus (RANSAC) is traditionally used
for this purpose while simultaneously finding the homogra-
phy transformation (hence the dashed feedback loop between
these two steps illustrated in Figure 3) [Fischler and Bolles,
1981]. RANSAC works by selecting from the matches a
random subset of the minimum size required to fit a model
(four for a homography). Then, the remaining landmarks are
mapped into the new image using this homography transfor-
mation, and those that end up close to their corresponding
matching landmarks are considered inliers. This process is re-
peated until a solution with a large fraction of inliers is found.

Unfortunately, as described above, fewer than 25% of land-
mark matches are inliers in many cases. Thus, the probability
that all four samples selected by RANSAC are inliers in a
given iteration is less than 0.254 ≤ 0.4%. To be 99% sure
that the correct solution is found, over 1, 000 RANSAC itera-
tions would be required, which is computationally infeasible.

We develop a novel strategy for inlier detection using the
fact that because the RMI field-of-view is small in compar-
ison to the target distance, the relationship between two im-
ages is roughly a translation. That is, in the decomposition of
H, A ≈ I (the identity matrix), and h ≈ 0. Our approach
is based on the intuition that if we take matching landmark
location pairs (la, lb) and compute the difference lb− la, then
differences for inliers will all occupy a small region in the
two-dimensional pixel space, since the translation between
the two landmarks should be roughly the same for all true
matches. On the other hand, these differences for false posi-
tive matches will be spread out more uniformly. Thus, all we
must do is find a region with a high density of points lb − la,
and this region will contain the inliers (the valid landmark
matches). This can be accomplished using the density-based
spatial clustering of applications with noise (DBSCAN) algo-
rithm [Ester et al., 1996]. Now, we formalize this intuition:
Proposition 1. Given an image pair related by homography
H with inlier landmark density ρ (landmarks per pixel), there
exists a region where density of landmark difference points
lb − la is at least:

ρ
(
1−
√
2s ‖h‖

)2/(
‖A− I‖2 + 2

√
2s ‖h‖

)2
,

where s = max(width, height) of the image (in pixels).

Proof. For any landmark x, consider all other landmarks in
a sphere of radius ε centered around x. Then each of these
landmarks can be written as x + δ for δ with ‖δ‖ ≤ ε.
We will show that the landmark differences [h(x)− x] and
[h(x + δ)− (x + δ)] are all in a sphere of ε′, so the density
of these difference points is ρ′ = ρ πε

2

πε′2
= ρ ε

2

ε′2
. Now, we will

bound ε′ by bounding:
‖∆‖ = ‖(h(x + δ)− (x + δ))− (h(x)− x)‖

=

∥∥∥∥ A (x + δ) + t

h> (x + δ) + 1
− δ − Ax + t

h>x + 1

∥∥∥∥
=

∥∥∥(A− I) δ − h> (x + δ) δ − h>δ Ax+t
h>x+1

∥∥∥
h> (x + δ) + 1

≤ ‖(A− I) δ‖+
∣∣h> (x + δ)

∣∣ ‖δ‖+ ∣∣h>δ
∣∣ ‖h(x)‖

h> (x + δ) + 1

≤ ‖(A− I) δ‖+ ‖h‖ ‖x + δ‖ ‖δ‖+ ‖h‖ ‖δ‖ ‖h(x)‖
h> (x + δ) + 1

=
‖(A− I) δ‖+ ‖h‖ ‖δ‖ (‖x + δ‖+ ‖h(x)‖)

h> (x + δ) + 1
,



where the first inequality follows from the triangle inequality,
and the second follows from the Cauchy–Schwartz inequality.
Then, by the definition of the spectral norm ‖(A− I) δ‖ ≤
‖A− I‖2 ‖δ‖. Using this along with Cauchy–Schwartz in
the denominator and that −

∣∣h> (x + δ)
∣∣ ≤ h> (x + δ):

‖∆‖ ≤ ‖A− I‖2 ‖δ‖+ ‖h‖ ‖δ‖ (‖x + δ‖+ ‖h(x)‖)
1− ‖h‖ ‖x + δ‖

≤ ε‖A− I‖2 + ‖h‖ (‖x + δ‖+ ‖h(x)‖)
1− ‖h‖ ‖x + δ‖ .

Now, observe that x, x + δ, and h(x) are all landmarks in
one of the two images, and therefore must be contained in the
bounds of the images. So their norms are at most

√
2s:

‖∆‖ ≤ ε
(
‖A− I‖2 + 2

√
2s ‖h‖

)/(
1−
√
2s ‖h‖

)
.

Finally, ε′ is bounded by ‖∆‖, so substituting this inequal-
ity into the expression for the density of landmark difference
points, ρ ε

2

ε′2
, gives the inequality in the proposition.

Intuitively, Proposition 1 tells us that as A→ I and h→ 0,
the density of landmark difference points becomes increas-
ingly large. In fact, in the limiting case when the images are
related only by a translation, the landmark difference points
are all co-located and thus occupy a region of infinite density.
For comparison, differences of randomly matched landmark
points (false positives) will have a density of at most ρ, so the
region of true matches will have a much higher density than
this when ‖A− I‖2 and ‖h‖ are small. Proposition 1 also
shows that while the assumption of a near-translation might
be insufficient for precise image registration, it can be suffi-
cient for the purposes of filtering outliers.

To find the high-density region of landmark match differ-
ences, DBSCAN uses two parameters: a neighborhood size ε
and minimum number of neighbors m for a point to be an in-
lier [Ester et al., 1996]. Rather than pick fixed parameters,
we use a schedule of increasingly permissible parameters:
(ε, m) = {(6, 8), (7, 7), (8, 6), (9, 5), (10, 5), (11, 5)}. We
iteratively run DBSCAN with the parameters until a high-
density region is found and then stop. We terminate unsuc-
cessfully if no high-density region is found after all param-
eter sets are explored. Upon successful termination, we ex-
clude all outlier matches as determined by DBSCAN and use
RANSAC to find the final homography between images.

Finally, because spacecraft operations are extremely risk
averse, we must build in safeguards to mitigate any errors
made during image registration. Even if the registration is
successful 99% of the time, we must ensure that the 1% fail-
ure cases will not lead to a re-pointing that will cause harm
to the spacecraft. A failure can occur for several reasons; for
example, there might not be any overlap between the Sol N
and N + 1 images, or there might be too few matching land-
marks between the images if the region of overlap is small.
Thus, we employ a classifier to automatically detect when a
registration failure has occurred.

To evaluate the homography H produced by our algorithm,
we use several features. First, guided by Proposition 1, we
use ‖A− I‖2 and ‖h‖ as features. We also use the transla-
tions tx and ty as features, since these should be within the

Figure 4: An example
of successful registra-
tion under significant
illumination changes.
A merged image is at
the bottom. The ap-
pearance of the tex-
tured surface varies
with illumination an-
gle. There are three
Mars hours of dif-
ference between the
images.

range of the images sizes. Finally, we use ε andm parameters
selected for DBSCAN and the number of landmark pairs ul-
timately used to produce the homography matrix as features.
Given these seven features, we train a random forest classi-
fier [Breiman, 2001] to evaluate whether the registration was
successful. We describe the training and evaluation of this
classifier in the following section.

5 Evaluation
To evaluate the ability of our proposed precision targeting ap-
proach to identify targets in an RMI image and to characterize
the factors that affect its performance, we used over 3,800
images acquired by the MSL rover during the first 1,200
sols of operation.2 Using metadata that includes the instru-
ment pointing, we identified over 16,500 pairs of images that
should overlap by less than the 19mrad field-of-view. We are
interested in evaluating how two factors affect performance:
(1) initial pointing accuracy and (2) changes in illumination
conditions between the Sol N and Sol N + 1 images (as in
Figure 4). First, we describe several implementation details.

To implement the precision targeting algorithm described
above, we used the OpenCV implementation of ORB feature
extraction and RANSAC-based homography finding [Brad-
ski, 2000; Rublee et al., 2011]. A random forest with 100
trees was used to classify the homographies produced by the
process in Figure 3. To train the random forest classifier, we
analyzed the roughly 16,500 alignments produced by our al-
gorithm using 2,500 landmarks. We used the noisy “ground
truth” RMI metadata to identify obviously successful cases
when more than 150 landmark pairs made it past the filters
and the offset was within 2mrad of the reported pointing
discrepancy between the two images. Similarly, we selected
cases for which less than 10 landmark pairs were found and
the estimated discrepancy was more than 20mrad off from
what was reported. Other cases were ambiguous due to small
errors in reported pointing, so these were labeled manually.

The resulting classifier has a 97% true-positive rate at a
0.5% false-positive rate (using the properly-selected thresh-
old) as estimated using the labels on the training examples
when they are left out of bootstrap samples. The ‖A− I‖2,
‖h‖, and number of landmark matches after filtering turn out

2Images are made publicly accessible online via the Planetary
Data System [Wiens, 2013].
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Figure 5: Performance as a function of three factors: (left) the number of landmarks initially extracted from the images (and
therefore the amount of information that must be uplinked to the spacecraft), (center) the amount of overlap between the Sol
N and N + 1 images, and (right) the difference in illumination angle between the images.

to be the most important features as determined by their fre-
quency of use within the random forest. In fact, over 96%
of the manually identified correct alignments are such that
the density of landmark differences are greater than the back-
ground density of randomly matched landmark differences as
determined by the expression in Proposition 1. This observa-
tion justifies the use of DBSCAN to filter matches.

Given the trained classifier, we can now determine the es-
timated success rate when different numbers of landmarks
are used, as shown in Figure 5 (left). The algorithm was re-
run with different numbers of landmarks ranging from 50 to
3,500. The corresponding uplink requirement (in kilobits) is
illustrated along the top of the figure. These results show
that good performance can be achieved with a reasonable up-
link budget of several hundred kilobits. The remainder of the
results use 2,500 landmarks, where the pointing refinement
approaches its asymptotic performance.

To evaluate how initial pointing accuracy and lighting con-
ditions affect performance, we use two measurements avail-
able via the image metadata. The initial pointing accuracy
is related to how much overlap there is in the fields of view
of the two images, which is related to how much the point-
ing differs between these images. Let β be the angular dif-
ference in pointing between the two images expressed as a
fraction of the instrument field-of-view (19mrad). Then the
area of overlap, as a fraction of the circular field-of-view area,
is: foverlap = 2

π

[
arccos(β)− β

√
1− β2

]
. Figure 5 (center)

shows the registration performance as a function of this quan-
tity. The success rate of the approach is stable above 80%
after there is roughly 33% overlap between the images.

Finally, we evaluate the effects of changing illumination
conditions between images. The solar illumination azimuth
and elevation angles at the time the image was taken are also
included in the image metadata. The average success rate
binned by illumination angle difference is shown in Figure 5
(right). The results suggest that the algorithm is sensitive to
illumination changes exceeding 60 deg, likely because shad-
ows formed by textured rock surfaces can vary drastically
with lighting angle (see Figure 4), making it challenging to
find corresponding landmarks. However, this challenge is
mitigated by the fact science operations on Mars typically oc-

cur within a consistent block of time each sol, when illumi-
nation conditions are similar.

Finally, we have implemented a C++ version of our pre-
cision targeting algorithm, with running times of less than
1 minute with over 3,500 landmarks on a 150MHz LEON4
processor, which is comparable to the processing capability
of the rover’s on-board processor. Thus, the results indicate
that our approach satisfies the requirements for operation.

6 Conclusion

In this paper, we present an image-registration-based ap-
proach for precise instrument targeting on board the Mars
2020 rover. We demonstrate using real data from the MSL
rover that given consistent lighting conditions (within 1–2
Mars hours) and at least 33% overlap between images, our
method can correctly identify the target location specified in
the first image within the second image in over 80% of cases.
Each of these 80% success cases translates to time saved or
a new capability to target small features relevant to astrobiol-
ogy and sample return selection. For the remaining cases, we
employ a classifier to reject failed image alignments and fail
safe by falling back to the default strategy of measuring the
target at the best-guess location coordinates.

Though the analysis in this work is targeted for the Super-
Cam instrument, there are other instruments selected for the
Mars 2020 rover that would benefit from such technology.
For example, the Planetary Instrument for X-Ray Lithochem-
istry (PIXL) [Allwood et al., 2014] and the Scanning Habit-
able Environments with Raman & Luminescence for Organ-
ics & Chemicals (SHERLOC) [Beegle et al., 2015] instru-
ment have small fields-of-view and are located on the rover’s
arm, which is also subject to thermal and mechanical errors
in placement. In addition to investigating the use of point-
ing refinement for other instruments like PIXL, we are ex-
ploring cross-camera pointing refinement, so that the image
acquired from one instrument or engineering camera can be
used to refine the pointing of another instrument, reducing the
downlink requirement and further increasing the efficiency of
making valuable scientific measurements.
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